Оценочный и сравнительный эксперимент
Даша Оля
Две девочки - 40000 рефератов
Ваш регион: Москва
 
Математика>>

Оценочный и сравнительный эксперимент Оценочный и сравнительный эксперимент

Обработка одноуровневого технологического эксперимента (выборка В1).

      . Построить эмпирический закон распределения для данной выборки.
|277-292 |284.5 |10    |-2    |-20   |4     |40    |
|292-307 |299.5 |14    |-1    |-14   |1     |14    |
|307-322 |314.5 |26    |0     |0     |0     |0     |
|322-337 |329.5 |21    |1     |21    |1     |21    |
|337-352 |344.5 |9     |2     |18    |4     |36    |
|352-367 |359.5 |8     |3     |24    |9     |72    |
|367-382 |374.5 |2     |4     |8     |16    |32    |
|[pic]   |—     |90    |—     |37    |—     |215   |


среднеквадратическое отклонение:
                                    [pic]



                 Эмпирический закон распределения выборки В1
  Гистограмма:
[pic]
             . Определить точечные оценки (среднее, дисперсия).
  Среднее значение:
                                    [pic]

  Дисперсия:
[pic]

       . Определить относительные ошибки и доверительные интервалы для
               генерального среднего и генеральной дисперсии.
  Абсолютная доверительная ошибка среднего:
                                    [pic]
при [pic], [pic]
  Относительная доверительная ошибка среднего:
                                    [pic]
  Границы доверительного интервала среднего значения:
                                    [pic]
                                    [pic]
                                    [pic]
  Абсолютная доверительная ошибка дисперсии:
                                    [pic]
                 [pic] – относительная доверительная ошибка
дисперсии
  Граница доверительного интервала дисперсии:
                                    [pic]
                                    [pic]
                                    [pic]
  . Спланировать объём выборки, если при определении среднего относительная
                       ошибка не должна превышать 1%.
  Для планирования объёма выборки из В1 выбираем 3 значения: 314, 322, 321.
Выборка В*.
  Числовые характеристики В*:
                          [pic] – среднее значение
  Дисперсия:
                                    [pic]
[pic]
  Среднее квадратичное отклонение:
                                    [pic]
  Квадратичная неровнота:
                                    [pic]
  Абсолютная доверительная ошибка:
                                    [pic]
где [pic]; [pic]; [pic]
  Относительная доверительная ошибка:
                                    [pic]
  Доверительный объём измерений: [pic]
                                    [pic]
  Реализуем выборку объёма [pic]. Для этого выбираем 2 значения: 324,  325,
319, 315, 311, 317, 313.
Выборка В**.
  Числовые характеристики В**:
                          [pic] – среднее значение
  Дисперсия:
                                    [pic]
  Среднее квадратичное отклонение:
                                    [pic]
  Квадратичная неровнота:
                                    [pic]
  Абсолютная доверительная ошибка:
                                    [pic]
где [pic]; [pic]; [pic]
  Относительная доверительная ошибка:
                                    [pic]
  . Проверить гипотезу о пропорциональности технологического параметра для
                              заданной выборки.
  Проверка гипотезы осуществляется по критерию х2:
                                    [pic]
где [pic] – объём выборки; [pic] – частота попадания  в  i  –  классе;  k  –
число классов;   [pic] – вероятность попадания в i – интервал.
                                    [pic]
                                    [pic]
где [pic]; [pic] – число степени свободы
  Рассмотрим гипотезу [pic], при конкурирующей [pic]
  Введём новое значение [pic], где [pic]; [pic]
|1 |347|287|
|2 |313|298|
|3 |344|277|
|4 |307|327|
|5 |314|321|
|6 |329|349|
|7 |359|318|
|8 |292|291|
|9 |323|329|
|10|301|302|


                     Числовые характеристики выборки В2.
Среднее значение:
[pic]Дисперсия:
                                    [pic]
[pic]
  Среднее квадратичное отклонение:
                                    [pic]
  Коэффициент вариации:
                                    [pic]
  Квадратичная неровнота:
                                    [pic]
  Абсолютная доверительная ошибка среднего значения:
                                    [pic]
где [pic]; [pic]; [pic]
  Относительная доверительная ошибка среднего значения:
                                    [pic]
                     Числовые характеристики выборки В3.
  Среднее значение:
                                    [pic]
  Дисперсия:
                                    [pic]
  Среднее квадратичное отклонение:
                                    [pic]
  Коэффициент вариации:
                                    [pic]
  Квадратичная неровнота:
                                    [pic]
  Абсолютная доверительная ошибка среднего значения:
                                    [pic]
где [pic]; [pic]; [pic]
  Относительная доверительная ошибка среднего значения:
                                    [pic]
      . Определить доверительные интервалы для генерального среднего и
                           генеральной дисперсии.
  Доверительный интервал для среднего значения выборки В2:
                                    [pic]
                                    [pic]
                                    [pic]
  Доверительный интервал для дисперсии:
                                    [pic]
                                [pic]; [pic]
где [pic]; [pic]
                                    [pic]
                                    [pic]
  Доверительный интервал для среднего значения выборки В3:
                                    [pic]
                                    [pic]
                                    [pic]
  Доверительный интервал для дисперсии:
                                    [pic]
                                [pic]; [pic]
где [pic]; [pic]
                                    [pic]
                                    [pic]
 . Проверка гипотезы о равенстве генеральных средних выборок В2 и В3: [pic];
                                   [pic].
  Сравниваем две  дисперсии нормальных генеральных совокупностей  с  числом
степеней свободы:
                                [pic]; [pic]
                                [pic]; [pic]
  Оцениваем возможность принятия гипотезы [pic].
  При альтернативной  гипотезе  [pic]  и  доверительной  вероятности  [pic]
находим:
                                    [pic]
                                    [pic]
т.к. [pic], то выдвинутую гипотезу  об  однородности  дисперсии  или  равной
точности двух рядов измерений [pic] и [pic] надо принять.
  Сравниваем  две   средние   из   нормальных   распределений   генеральных
совокупностей.
  Если [pic] доказана, то используется критерий [pic]:
                                   [pic],
                                  где [pic]
[pic]; [pic]; [pic]
[pic]; [pic]; [pic]
  Проверим гипотезу о равенстве средних:
                      [pic] при конкурирующей гипотезе
                                    [pic]
  Затем находим расчётное значение критерия Стьюдента:
                                    [pic]
и его табельное значение [pic]
  Т.к.  [pic],  то  генеральные  средние  [pic]  и  [pic]   статически   не
различаются. Гипотеза [pic] принимается.

Для добавления страницы "Оценочный и сравнительный эксперимент" в избранное нажмине Ctrl+D
 
 
2005 © Copyright, 2devochki.ru
E-mail:
Реклама на сайте
  


Посетите наши другие проекты:
Электронные книги
Электронные словари
Коды к играм и прохождение игр