Bilet
Даша Оля
Две девочки - 40000 рефератов
Ваш регион: Москва
 
Математика>>

Bilet Bilet

Билет№1
   1) Функция y=F(x) называется периодической, если существует такое число
      Т, не равное нулю, что для любых значений аргумента из области
      определения функции выполняются  равенства f(x-T)=f(x)=f(x+T). Число Т
      называется периодом функции. Например, y=sinx – периодическая функция
      (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа
      вида T=2PR, где R –целое, кроме 0. Наименьшим положительным периодом
      является число T=2P. Для построения графика периодической функции
      достаточно построить часть графика на одном из промежутков длинной Т,
      а затем выполнить параллельный перенос этой части графика вдоль оси
      абсцисс на +-Т, +-2Т, +-3Т,…
   2) Степенью числа а, большего нуля, с рациональным показателем r=m/n (m-
      целое число;n-натуральное, больше 1) называется число nSQRa^m, т.е.
      a^m/n = nSQRa^m. Степень числа 0 определена только для положительных
      показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным
      показателем Для любых рациональных чисел r иs и любых положительных a
      и b справедливы следующие свойства. 1) Произведение степеней с
      одинаковыми основаниями равно степени с тем же основанием и
      показателем, равным сумме показателей множителей: a^r * a^s = a^r+s.
      2) Частное степеней с одинаковыми основаниями равно степени с тем же
      основанием и показателем, равным разности показателей делимого и
      делителя: a^r : a^s = a^r-s.
      3) При возведении степени в степень основание оставляют прежним, а
      показатели перемножают: (a^r)^s = a^rs   4) Степень произведения равна
      произведению степеней: (ab)^r = a^r * b^r.   5) Степень частного равна
      частному степеней (a/b)^r = a^r / b^r.   6) Пусть r рациональное число
      и число a больше нуля, но меньше числа b, 0 b^r, если r-отрицательное число.7)
      Для любых рациональных чисел r и s из неравенства r1 ; a^r > a^s при 00. Имеем: nSQRa^m : qSQRa^p = nqSQRa^mq : nqSQRa^pn = nqSQRa^mq /
      nqSQRa^pn Используя свойство частного корней, получим: nqSQRa^mq /
      nqSQRa^pn = nqSQRa^mq / a^pn = nqSQRa^mq-pn. Применим определение
      степени с рациональным показателем: nqSQRa^mq-pn = a^mq-pn/nq =
      a^mq/nq-pn/nq = a^m/n-p/q = a^r-s.

Билет №2
1.Точка Х0 наз-ся точкой максимума функции f, если для всех х из некоторой
окрестности точки х0 выполнено неравенство f(x)(f(x0)
Окрестностью точки х0 наз-ся любой интервал, сод-щий
эту точку. Например, функция y=-x*x-3 имеет точку максимума х0=0.
Точка х0 наз-ся точкой минимума функции f, если для всех х из некоторой
окрестности х0 выполнено неравенство f(x0) (f(x)
Например, функция y=x+2 имеет точку минимума х0=0.


1)Если (a((1 то уравнение sinx=a корней не имеет, так как (sinx((1 для
любого х.
2)Пусть (a((1 а) На промежутке –пи/2;пи/2 функция y=sinx возрастает,
следовательно по теореме о корне, уравнение sinx =a  имеет один корень
x=arcsin a.
Б) На промежутке пи/2;3пи/2 функция y=sin x убывает, значит по теореме о
корне ур-ие sin x=a имеет одно решение x=пи-arcsin a.
В) учитывая периодичность функции y= sin x (период функции равен 2пи n)
решение ур-ия можно записать так: х=arcsin a +2пи n
x=пи- arcsin a +2пи n
решение данного ур-ия можно записать в виде следующей формулы
x=(-1)^n  arcsin a + пи n
при четных n(n=2k) мы получим все решения, записанные первой формулой , а
при нечетных n(n=2k+1)- все решения записанные второй формулой.



      Билет №3
        1) арксинусом числа а называется число, для которого выполнены
           следующие два условия: 1)-p/2 1, a arcsin a определён при –1  1; arccos a
           определён при |a|Б=1
        2) Показательной функцией называется функция вида y=a^x, где а-
           заданное число, а >0, a не равно 1. Свойства показательной
           функции 1) Областью определения показательной функции являются
           все действительные числа. Это следует из того, что для любого x
           принадлежащего R определено значение степени a^x (при a>0). 2)
           Множеством значений показательной функции являются все
           положительные действительные числа: E(y)=(0;+бескон.) 3) а)
           Показательная функция y+a^x возрастает на всей области
           определения, если a>1.  б) Показательная функция Y=a^x убывает
           на всей области определения, если 01,
           то большему значению аргумента (x2>x1) соответствует большее
           значение функции (a^x2 > a^x1). Из свойств степени известно,
           если r>s и a>1, то a^r >a^s. Пусть х2 > x1 и a > 1, тогда a^x2
           >a^x1 (по свойству степени). А это означает, что функция  y=a^x1
           при a>1 возрастает на всей области определения. Докажем, что
           если 0 x1)
           соответствует меньшее значение функции (a^x2 s и 0x1 и
           00, a не рано 1. Свойства логарифмической
           функции 1) Областью определения логарифмической функции являются
           все положительные действительные числа. Это следует из
           определения логарифма числа b по основанию a; loga b имеет
           смысл, если b>0 2) Множеством значений логарифмической функции
           являются все действительные числа. Пусть y0 – произвольное
           действительное число. Покажем, что найдётся такое положительное
           значение аргумента x0, что выполняется равенство y0 = logax0. По
           определению логарифма числа имеем: x0 = a^y0, a^y0 > 0. Мы
           показали, что нашлось значение x0 > 0, при котором значение
           логарифмической функции равно у0 (у0 – произвольное
           действительное число). 3)  Логарифмическая функция обращается в
           нуль при х=1. Решим уравнение logax=0. По определению логарифма
           получаем: a^0 = x, т.е. x = 1. 4) а) логарифмическая функция
           y=loga x возрастает на всей области определения, если
           a>1.Докажем, что большему значению аргумента (х2 > х1)
           соответствует большее значение функции  (loga x2 > loga x1),
           если a>1. Пусть x2 > x1 > 0; тогда используя основное
           логарифмическое тождество, запишем это неравенство в виде
           a^logax2 > a^logax1 . (1) В неравенстве (1) сравниваются два
           значения показательной функции. Поскольку при a>1 показательная
           функция возрастает, большее значение функции может быть только
           при большем значении аргумента, т.е. logax2 > logax1.
           б)Логарифмическая функция y=logax убывает на всей области
           определения, если 01 принимает положительные значения, если x>1;
           отрицательные значения, если 01.  Пусть a>1, тогда функция y=logax возрастает на всей
           области определения (рис. 31); причём loga1=0. Из этого следует,
           что: для x>1  logax > loga1, т.е. logax>0; для 01  logax  loga1, т.е. logax > 0. 6) Логарифмическая функция
           непрерывна на всей области определения.


Билет №6
   1) Пусть на некотором промежутке задана функция y=f(x); x0 – точка этого
      промежутка; ?x – приращения аргумента x; x0 + ?X  также принадлежит
      этому промежутку; ?y – приращение функции. Предел отношения (если он
      существует) приращения функции к приращению аргумента при стремлении
      приращения аргумента к нулю называется производной функции в точке.
      Пусть материальная точка движется по координатной прямой по закону
      x=x(t), т.е. координата этой точки x- известная функция времени t.
      Механический смысл производной состоит в том, что производная от
      координаты по времени есть скорость: v(t) = x’(t).
   2) 1) Если |a|>1, то уравнение cos x = a решений не имеет, так как |cos
      x|f(a) при х >а.
Ф-ция непрерывная в каждой точке промежутка наз-ся непрерывной на
промежутке.
Гр. непрерывной на промежутке ф-ции представляет собой непрерывную линию.
Иными словами гр. можно нарисовать не отрывая карандаша от бумаги.
Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x >3^2,
при х>2. Ф-ция f(x)=3^x непрерывна на множестве всех действительных чисел ,
а ее график можно нарисовать не отрывая карандаша от бумаги.
2) Арифметическим корнем n-ой степени из числа а наз-ся неотрицательное
число n-ая степень к-рого равна а.
Св-ва корней: Для любых натуральных n, целого k и любых неотрицательных
чисел a и b выполняются следующие св-ва:
 1. N sqr ab= n sqr a * n sqr b
 2. n sqr (a/b)= (n sqr a)/( n sqr b) b ?0
 3. n sqr (k sqr a)= kn sqr (a), k> 0
 4. n sqr (a) = kn sqr (a^k) ,k>0
 5. n sqr (a^k)=( n sqr a)^k (ели k?0,то а?0)
6. Для любых неотрицательных чисел а и b таких,  что а 0(а(1), и любых пол-ных х и у выполняются
следующие св-ва:
1) loga1=0
2) logaа=1
3) loga(ху)= logaХ+ logaУ
Док-во: Воспользуемся осн-ным лог-им тождеством
   a ^ logab =b и св-ом показат-ной ф-ции
а^ х+у =а^x * а^y         имеем
а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay
4) loga(Х/У)= logaХ- logaУ
5) logaХ^Р= рlogaХ
6) Формула перехода:
logaХ= logbX/ logbA



Билет №10.
1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех
значений аргумента из этого промежутка F((x)=f(x). Например ф-ция
F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех
действительных чисел. Действительно F((x)=12X^2+3 , т.е. F((x)=f(x).
2. Если каждому действительному числу поставлен в соответствие его тангенс
, то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x.
Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме
чисел  вида
X=пи/2 +пи k, k(Z.
Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа,
при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, k(Z.
2) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-(;+().
3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого х(D(y) выполняется нер-во
tg(-x)=-tg x . покажем это,  tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x
4) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме
0.Наименьшим положительным периодом тангенса явл-ся число пи.
5) Ф-ция тангенс принимает значения 0 при х=пи k, k(Z. Решением ур-ия tg
x=0 явл-ся числа х=пи k, k(Z
6) Ф-ция tg принимает положительные значения при пи k  ?)). Это число
      называют интегралом, т.е. Sn >  integral (a;b) f(x) dx при n> ?
   2) Если каждому действительному числу поставлен в соответствие его синус,
      то говорят, что задана функция синус (обозначение y=sin x). Свойства
      функции синус  1) Область определения функции синус является множество
      всех действительных чисел, т.е. D(y)=R. Каждому действительному числу
      х соответствует единственная точка единичной окружности Px, получаемая
      поворотом точки P0(1;0) на угол, равный х радиан. Точка Рх имеет
      ординату, равную sinx. Следовательно, для любого х определено значение
      функции синус.  2) Множеством значений функции синус является
      промежуток  [-1;1], т.е. E(y)=[-1;1]. Это следует из определения
      синуса: ордината любой точки единичной окружности удовлетворяет
      условию –1