Билет№1 1) Функция y=F(x) называется периодической, если существует такое число Т, не равное нулю, что для любых значений аргумента из области определения функции выполняются равенства f(x-T)=f(x)=f(x+T). Число Т называется периодом функции. Например, y=sinx – периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида T=2PR, где R –целое, кроме 0. Наименьшим положительным периодом является число T=2P. Для построения графика периодической функции достаточно построить часть графика на одном из промежутков длинной Т, а затем выполнить параллельный перенос этой части графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,… 2) Степенью числа а, большего нуля, с рациональным показателем r=m/n (m- целое число;n-натуральное, больше 1) называется число nSQRa^m, т.е. a^m/n = nSQRa^m. Степень числа 0 определена только для положительных показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным показателем Для любых рациональных чисел r иs и любых положительных a и b справедливы следующие свойства. 1) Произведение степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей множителей: a^r * a^s = a^r+s. 2) Частное степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя: a^r : a^s = a^r-s. 3) При возведении степени в степень основание оставляют прежним, а показатели перемножают: (a^r)^s = a^rs 4) Степень произведения равна произведению степеней: (ab)^r = a^r * b^r. 5) Степень частного равна частному степеней (a/b)^r = a^r / b^r. 6) Пусть r рациональное число и число a больше нуля, но меньше числа b, 0 b^r, если r-отрицательное число.7) Для любых рациональных чисел r и s из неравенства r1 ; a^r > a^s при 00. Имеем: nSQRa^m : qSQRa^p = nqSQRa^mq : nqSQRa^pn = nqSQRa^mq / nqSQRa^pn Используя свойство частного корней, получим: nqSQRa^mq / nqSQRa^pn = nqSQRa^mq / a^pn = nqSQRa^mq-pn. Применим определение степени с рациональным показателем: nqSQRa^mq-pn = a^mq-pn/nq = a^mq/nq-pn/nq = a^m/n-p/q = a^r-s. Билет №2 1.Точка Х0 наз-ся точкой максимума функции f, если для всех х из некоторой окрестности точки х0 выполнено неравенство f(x)(f(x0) Окрестностью точки х0 наз-ся любой интервал, сод-щий эту точку. Например, функция y=-x*x-3 имеет точку максимума х0=0. Точка х0 наз-ся точкой минимума функции f, если для всех х из некоторой окрестности х0 выполнено неравенство f(x0) (f(x) Например, функция y=x+2 имеет точку минимума х0=0. 1)Если (a((1 то уравнение sinx=a корней не имеет, так как (sinx((1 для любого х. 2)Пусть (a((1 а) На промежутке –пи/2;пи/2 функция y=sinx возрастает, следовательно по теореме о корне, уравнение sinx =a имеет один корень x=arcsin a. Б) На промежутке пи/2;3пи/2 функция y=sin x убывает, значит по теореме о корне ур-ие sin x=a имеет одно решение x=пи-arcsin a. В) учитывая периодичность функции y= sin x (период функции равен 2пи n) решение ур-ия можно записать так: х=arcsin a +2пи n x=пи- arcsin a +2пи n решение данного ур-ия можно записать в виде следующей формулы x=(-1)^n arcsin a + пи n при четных n(n=2k) мы получим все решения, записанные первой формулой , а при нечетных n(n=2k+1)- все решения записанные второй формулой. Билет №3 1) арксинусом числа а называется число, для которого выполнены следующие два условия: 1)-p/2 1, a arcsin a определён при –1 1; arccos a определён при |a|Б=1 2) Показательной функцией называется функция вида y=a^x, где а- заданное число, а >0, a не равно 1. Свойства показательной функции 1) Областью определения показательной функции являются все действительные числа. Это следует из того, что для любого x принадлежащего R определено значение степени a^x (при a>0). 2) Множеством значений показательной функции являются все положительные действительные числа: E(y)=(0;+бескон.) 3) а) Показательная функция y+a^x возрастает на всей области определения, если a>1. б) Показательная функция Y=a^x убывает на всей области определения, если 01, то большему значению аргумента (x2>x1) соответствует большее значение функции (a^x2 > a^x1). Из свойств степени известно, если r>s и a>1, то a^r >a^s. Пусть х2 > x1 и a > 1, тогда a^x2 >a^x1 (по свойству степени). А это означает, что функция y=a^x1 при a>1 возрастает на всей области определения. Докажем, что если 0 x1) соответствует меньшее значение функции (a^x2 s и 0x1 и 00, a не рано 1. Свойства логарифмической функции 1) Областью определения логарифмической функции являются все положительные действительные числа. Это следует из определения логарифма числа b по основанию a; loga b имеет смысл, если b>0 2) Множеством значений логарифмической функции являются все действительные числа. Пусть y0 – произвольное действительное число. Покажем, что найдётся такое положительное значение аргумента x0, что выполняется равенство y0 = logax0. По определению логарифма числа имеем: x0 = a^y0, a^y0 > 0. Мы показали, что нашлось значение x0 > 0, при котором значение логарифмической функции равно у0 (у0 – произвольное действительное число). 3) Логарифмическая функция обращается в нуль при х=1. Решим уравнение logax=0. По определению логарифма получаем: a^0 = x, т.е. x = 1. 4) а) логарифмическая функция y=loga x возрастает на всей области определения, если a>1.Докажем, что большему значению аргумента (х2 > х1) соответствует большее значение функции (loga x2 > loga x1), если a>1. Пусть x2 > x1 > 0; тогда используя основное логарифмическое тождество, запишем это неравенство в виде a^logax2 > a^logax1 . (1) В неравенстве (1) сравниваются два значения показательной функции. Поскольку при a>1 показательная функция возрастает, большее значение функции может быть только при большем значении аргумента, т.е. logax2 > logax1. б)Логарифмическая функция y=logax убывает на всей области определения, если 01 принимает положительные значения, если x>1; отрицательные значения, если 01. Пусть a>1, тогда функция y=logax возрастает на всей области определения (рис. 31); причём loga1=0. Из этого следует, что: для x>1 logax > loga1, т.е. logax>0; для 01 logax loga1, т.е. logax > 0. 6) Логарифмическая функция непрерывна на всей области определения. Билет №6 1) Пусть на некотором промежутке задана функция y=f(x); x0 – точка этого промежутка; ?x – приращения аргумента x; x0 + ?X также принадлежит этому промежутку; ?y – приращение функции. Предел отношения (если он существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке. Пусть материальная точка движется по координатной прямой по закону x=x(t), т.е. координата этой точки x- известная функция времени t. Механический смысл производной состоит в том, что производная от координаты по времени есть скорость: v(t) = x’(t). 2) 1) Если |a|>1, то уравнение cos x = a решений не имеет, так как |cos x|f(a) при х >а. Ф-ция непрерывная в каждой точке промежутка наз-ся непрерывной на промежутке. Гр. непрерывной на промежутке ф-ции представляет собой непрерывную линию. Иными словами гр. можно нарисовать не отрывая карандаша от бумаги. Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x >3^2, при х>2. Ф-ция f(x)=3^x непрерывна на множестве всех действительных чисел , а ее график можно нарисовать не отрывая карандаша от бумаги. 2) Арифметическим корнем n-ой степени из числа а наз-ся неотрицательное число n-ая степень к-рого равна а. Св-ва корней: Для любых натуральных n, целого k и любых неотрицательных чисел a и b выполняются следующие св-ва: 1. N sqr ab= n sqr a * n sqr b 2. n sqr (a/b)= (n sqr a)/( n sqr b) b ?0 3. n sqr (k sqr a)= kn sqr (a), k> 0 4. n sqr (a) = kn sqr (a^k) ,k>0 5. n sqr (a^k)=( n sqr a)^k (ели k?0,то а?0) 6. Для любых неотрицательных чисел а и b таких, что а 0(а(1), и любых пол-ных х и у выполняются следующие св-ва: 1) loga1=0 2) logaа=1 3) loga(ху)= logaХ+ logaУ Док-во: Воспользуемся осн-ным лог-им тождеством a ^ logab =b и св-ом показат-ной ф-ции а^ х+у =а^x * а^y имеем а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay 4) loga(Х/У)= logaХ- logaУ 5) logaХ^Р= рlogaХ 6) Формула перехода: logaХ= logbX/ logbA Билет №10. 1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F((x)=f(x). Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F((x)=12X^2+3 , т.е. F((x)=f(x). 2. Если каждому действительному числу поставлен в соответствие его тангенс , то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x. Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме чисел вида X=пи/2 +пи k, k(Z. Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа, при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, k(Z. 2) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-(;+(). 3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого х(D(y) выполняется нер-во tg(-x)=-tg x . покажем это, tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x 4) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме 0.Наименьшим положительным периодом тангенса явл-ся число пи. 5) Ф-ция тангенс принимает значения 0 при х=пи k, k(Z. Решением ур-ия tg x=0 явл-ся числа х=пи k, k(Z 6) Ф-ция tg принимает положительные значения при пи k ?)). Это число называют интегралом, т.е. Sn > integral (a;b) f(x) dx при n> ? 2) Если каждому действительному числу поставлен в соответствие его синус, то говорят, что задана функция синус (обозначение y=sin x). Свойства функции синус 1) Область определения функции синус является множество всех действительных чисел, т.е. D(y)=R. Каждому действительному числу х соответствует единственная точка единичной окружности Px, получаемая поворотом точки P0(1;0) на угол, равный х радиан. Точка Рх имеет ординату, равную sinx. Следовательно, для любого х определено значение функции синус. 2) Множеством значений функции синус является промежуток [-1;1], т.е. E(y)=[-1;1]. Это следует из определения синуса: ордината любой точки единичной окружности удовлетворяет условию –1